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Solution 4

1. Let C*[a,b] be the vector space of all k-th continuously differentiable functions on [a, b].
Show that [|f||x = E?:o |£9)||oo defines a norm on C*¥[a,b]. Furthermore, f, — f in

(Cla,8], | - 1) means fr =% f,---, f1 = 0.
Solution. Straightforward.

2. Let C*[a,b] be the vector space of all infinitely many times differentiable functions on
[a,b]. Show that
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defines a metric on C*[a, b] such that f, — f means ||f, — f||x — 0 for all .
Solution. Use the fact that p = d/(1 + d is metric bounded by 1.

3. In class we showed that the set P = {f : f(z) > 0,Vx € [a,b]} is an open set in C[a,b).
Show that it is no longer true if the norm is replaced by the L'-norm. In other words, for
each f € P and each € > 0, there is some continuous g which is negative somewhere such
that [lg — fll1 <e .

Solution. Fix a point, say, a and consider the continuous piecewise function ¢ which is
equal to 1 at a and vanishes on [a 4 1/k,b]. Then
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Let f € Cla,b] and g = f — (f(a) 4+ 1)pk also belongs to Cla, b] and gi(a) = —1 < 0, but
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4. Show that [a, b] can be expressed as the intersection of countable open intervals. It shows
in particular that countable intersection of open sets may not be open.

Solution. Simply observe
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[a,b] = [ J(a—1/4,0+1/7) .

J=1

5. Optional. Show that every open set in R can be written as a countable union of disjoint
open intervals. Suggestion: Introduce an equivalence relation x ~ y if  and y belongs to
the same open interval in the open set and observe that there are at most countable many
such intervals.

Solution.
Let V be open in R. Fix x € V, there exists some open interval I, x € I, I C V. Let I,
= (@, ba), @ € A, be all intervals with this property. Let

I, = (az,bz),a; = inf aq, by = sup by
« «
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satisfy x € I, I, C V (the largest open interval in V' containing x). It is obvious that
I.NI,# ¢ =1,=1, Let x ~yif I, = I,. Then one can show that ~ is an equivalence
relation. By the discussion above, we have
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which is a disjoint union. Moreover V/ ~ is at most countable since we can pick a rational
number in each I to represent the class [z] € V/ ~. Thus V can be written as a countable
union of disjoint open intervals.

6. Identify the boundary points, interior points, interior and closure of the following sets in
R:
(a) [1,2)U(2,5) U{10}.
(b) [0,1]NQ.

(c) Upza(1/(k+1),1/k).

(d) {1,2,3,---}.

Solution.

(a) Boundary points: 1,2,5,10. Interior points: (1,2),(2,5). Interior: (1,2) U (2,5).

Closure: [1,5] U{10}.

(b) Boundary points: All points in [0,1]. No interior point. Interior: the empty set ¢.
Closure: [0, 1]

(c) Boundary points: {1/k: k > 1},0. Interior points: all points in this set. Interior:
This set (because it is an open set). Closure: [0, 1].

(d) Boundary points 1,2,3,---. No interior points. Interior: ¢. Closure: the set itself (it
is a closed set).
7. Identify the boundary points, interior points, interior and closure of the following sets in
R2:
(a) R=10,1) x [2,3)U{0} x (3,5).
(b) {(z,y):1<2®+y* <9}
(C) R2 \ {(17())7 (1/27 0)7 (1/370)7 (1/47())7 T }

Solution.

(a) Boundary points: the geometric boundary of the rectangle and the segment {0} x
[3,5]. Interior points: all points inside the rectangle. Interior (0,1) x (3,5). Closure
[0,1] x [3,5] U{0} x [3,5].

(b) Boundary points: all (x,y) satisfying 22 + 2> = 1 or 22 + y?> = 9. Interior points:
all points satisfying 1 < 22 + 42 < 9. Interior {(z,y) : 1 < 2% +y% < 9}. Closure
{(z,y): 1<2” +y* <9}

(c) Boundary points: (0,0),(1,0),(1/2),(1/3,0),---. Interior points: all points except
boundary points. Interior: R?\ {(0,0), (1,0),(1/2),(1/3,0),---}. Closure: R2

8. Describe the closure and interior of the following sets in C10, 1]:
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9.

10.

(a) {f: f(z)> -1, Yz €[0,1]}.
(b) {f: f(0) = f(1)}

Solution.

(a) Closure: {f € C[0,1] : f(z) > —1, Vz € [0,1]}. Interior: The set itself. It is an open
set.

(b) Closure: The set itself. It is a closed set. Interior: ¢. Let f satisfy f(0) = f(1).
For every £ > 0, it is clear we can find some g € C]0, 1] satisfying ||g — f|lcoc < & but
g(0) # g(1). It shows that every metric ball B.(f) must contain some functions lying
outside this set.

Find subsets in R such that A N B is properly contained in A N B.

Solution.

ANB = AN B is not always true. For instance, consider intervals (a,b) and (b,c). We
have (a,b) N (b,c) = {b} but (a,b) N (b,c) = ¢. Or you take A to be the set of all rationals
and B all irrationals. Then ANB=¢=¢ but ANB=R!

Show that E = {x € X : d(z, E) = 0} for every non-empty E C X.

Solution. Let A = {z € X : d(z,E) = 0}. Claim that A is closed. Let x,, — x where
zn € A. Recalling that x — d(z, E) is continuous, so d(z, E) = limy,_,o d(zy, E) = 0, that
is, x € A. We conclude that A is a closed set. As it clearly contains E, so E C A since
the closure of E is the smallest closed set containing . On the other hand, if x € A, then

Byn(x) N E # ¢. Picking z, € By/,(z) N E, we have {x,} C E, 2, = 2,50 z € E.



