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Solution 4

1. Let Ck[a, b] be the vector space of all k-th continuously differentiable functions on [a, b].
Show that ‖f‖k ≡

∑k
j=0 ‖f (j)‖∞ defines a norm on Ck[a, b]. Furthermore, fn → f in

(C[a, b], ‖ · ‖k) means fn ⇒ f, · · · , f (k)n ⇒ f (k).

Solution. Straightforward.

2. Let C∞[a, b] be the vector space of all infinitely many times differentiable functions on
[a, b]. Show that

d∞(f, g) =
∞∑
k=0

1

2k
‖f − g‖k

1 + ‖f − g‖k

defines a metric on C∞[a, b] such that fn → f means ‖fn − f‖k → 0 for all k.

Solution. Use the fact that ρ = d/(1 + d is metric bounded by 1.

3. In class we showed that the set P = {f : f(x) > 0, ∀x ∈ [a, b]} is an open set in C[a, b].
Show that it is no longer true if the norm is replaced by the L1-norm. In other words, for
each f ∈ P and each ε > 0, there is some continuous g which is negative somewhere such
that ‖g − f‖1 < ε .

Solution. Fix a point, say, a and consider the continuous piecewise function ϕk which is
equal to 1 at a and vanishes on [a+ 1/k, b]. Then∫ b

a
ϕk(x)dx =

1

2k
.

Let f ∈ C[a, b] and gk = f − (f(a) + 1)ϕk also belongs to C[a, b] and gk(a) = −1 < 0, but

‖f − gk‖1 =

∫ b

a
|f(x)− gk(x)|dx =

f(a) + 1

2k
→ 0

as k →∞.

4. Show that [a, b] can be expressed as the intersection of countable open intervals. It shows
in particular that countable intersection of open sets may not be open.

Solution. Simply observe

[a, b] =

∞⋂
j=1

(a− 1/j, b+ 1/j) .

5. Optional. Show that every open set in R can be written as a countable union of disjoint
open intervals. Suggestion: Introduce an equivalence relation x ∼ y if x and y belongs to
the same open interval in the open set and observe that there are at most countable many
such intervals.

Solution.

Let V be open in R. Fix x ∈ V , there exists some open interval I, x ∈ I, I ⊆ V . Let Iα
= (aα, bα), α ∈ A, be all intervals with this property. Let

Ix = (ax, bx), ax = inf
α
aα, bx = sup

α
bα.
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satisfy x ∈ Ix, Ix ⊆ V (the largest open interval in V containing x). It is obvious that
Ix ∩ Iy 6= φ⇒ Ix = Iy. Let x ∼ y if Ix = Iy. Then one can show that ∼ is an equivalence
relation. By the discussion above, we have

V =
⋃
x∈V

Ix =
⋃

[x]∈V/∼

(⋃
y∼x

Ix

)
=

⋃
[x]∈V/∼

Ix,

which is a disjoint union. Moreover V/ ∼ is at most countable since we can pick a rational
number in each Ix to represent the class [x] ∈ V/ ∼. Thus V can be written as a countable
union of disjoint open intervals.

6. Identify the boundary points, interior points, interior and closure of the following sets in
R:

(a) [1, 2) ∪ (2, 5) ∪ {10}.
(b) [0, 1] ∩Q.

(c)
⋃∞
k=1(1/(k + 1), 1/k).

(d) {1, 2, 3, · · · } .

Solution.

(a) Boundary points: 1, 2, 5, 10. Interior points: (1, 2), (2, 5). Interior: (1, 2) ∪ (2, 5).
Closure: [1, 5] ∪ {10}.

(b) Boundary points: All points in [0, 1]. No interior point. Interior: the empty set φ.
Closure: [0, 1]

(c) Boundary points: {1/k : k ≥ 1}, 0. Interior points: all points in this set. Interior:
This set (because it is an open set). Closure: [0, 1].

(d) Boundary points 1, 2, 3, · · · . No interior points. Interior: φ. Closure: the set itself (it
is a closed set).

7. Identify the boundary points, interior points, interior and closure of the following sets in
R2:

(a) R ≡ [0, 1)× [2, 3) ∪ {0} × (3, 5).

(b) {(x, y) : 1 < x2 + y2 ≤ 9}.
(c) R2 \ {(1, 0), (1/2, 0), (1/3, 0), (1/4, 0), · · · }.

Solution.

(a) Boundary points: the geometric boundary of the rectangle and the segment {0} ×
[3, 5]. Interior points: all points inside the rectangle. Interior (0, 1) × (3, 5). Closure
[0, 1]× [3, 5] ∪ {0} × [3, 5].

(b) Boundary points: all (x, y) satisfying x2 + y2 = 1 or x2 + y2 = 9. Interior points:
all points satisfying 1 < x2 + y2 < 9. Interior {(x, y) : 1 < x2 + y2 < 9}. Closure
{(x, y) : 1 ≤ x2 + y2 ≤ 9}.

(c) Boundary points: (0, 0), (1, 0), (1/2), (1/3, 0), · · · . Interior points: all points except
boundary points. Interior: R2 \ {(0, 0), (1, 0), (1/2), (1/3, 0), · · · }. Closure: R2.

8. Describe the closure and interior of the following sets in C[0, 1]:
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(a) {f : f(x) > −1, ∀x ∈ [0, 1]}.
(b) {f : f(0) = f(1)}.

Solution.

(a) Closure: {f ∈ C[0, 1] : f(x) ≥ −1, ∀x ∈ [0, 1]}. Interior: The set itself. It is an open
set.

(b) Closure: The set itself. It is a closed set. Interior: φ. Let f satisfy f(0) = f(1).
For every ε > 0, it is clear we can find some g ∈ C[0, 1] satisfying ‖g − f‖∞ < ε but
g(0) 6= g(1). It shows that every metric ball Bε(f) must contain some functions lying
outside this set.

9. Find subsets in R such that A ∩B is properly contained in A ∩B.

Solution.

A ∩B = A ∩ B is not always true. For instance, consider intervals (a, b) and (b, c). We
have (a, b)∩ (b, c) = {b} but (a, b) ∩ (b, c) = φ. Or you take A to be the set of all rationals
and B all irrationals. Then A ∩B = φ = φ but A ∩B = R !

10. Show that E = {x ∈ X : d(x,E) = 0} for every non-empty E ⊂ X.

Solution. Let A = {x ∈ X : d(x,E) = 0}. Claim that A is closed. Let xn → x where
xn ∈ A. Recalling that x 7→ d(x,E) is continuous, so d(x,E) = limn→∞ d(xn, E) = 0, that
is, x ∈ A. We conclude that A is a closed set. As it clearly contains E, so E ⊂ A since
the closure of E is the smallest closed set containing E. On the other hand, if x ∈ A, then
B1/n(x) ∩ E 6= φ. Picking xn ∈ B1/n(x) ∩ E, we have {xn} ⊂ E, xn → x, so x ∈ E.


